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Abstract

The relation between the iterative algorithms based on the computational singular perturbation (CSP) and the invari-
ance equation (IE) methods is examined. The success of the two methods is based on the appearance of fast and slow time
scales in the dynamics of stiff systems. Both methods can identify the low-dimensional surface in the phase space (slow
invariant manifold, SIM), where the state vector is attracted under the action of fast dynamics. It is shown that this equiv-
alence of the two methods can be expressed by simple algebraic relations. CSP can also construct the simplified non-stiff
system that models the slow dynamics of the state vector on the SIM. An extended version of IE is presented which can
also perform this task. This new IE version is shown to be exactly similar to a modified version of CSP, which results in a
very efficient algorithm, especially in cases where the SIM dimension is small, so that significant model simplifications are
possible.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Stiff dynamical systems often evolve according to the fastest time scales during a short period only, as in
boundary layers, shocks, etc. In the remaining much longer period the solution evolves on a low-dimensional
surface in the phase space (slow invariant manifold, SIM) according to the slower time scales [1,2]; the fastest
time scales, being exhausted, restrain the solution on this surface.

The existence of the fast time scales in the long periods where the solution is characterized by the slow ones
generates the numerical difficulties, typical of stiff systems.

The accurate identification of the SIM allows the simplification of the stiff dynamical system (i.e., smaller
number of unknowns and a vector field free of the fast scales), while the generation of the simplified non-stiff
system governing the evolution of the state vector on the SIM allows the use of computationally efficient (e.g.,
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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explicit) time integration methods. In addition, the availability of the SIM and the simplified system can shed
light on the physics of the problem under examination, by identifying the processes in equilibrium (responsible
for the development of the SIM) and the driving ones (dominating the simplified system). For these reasons
this topic has lately attracted considerable attention. Among the most established algorithms are the invari-
ance equation (IE) algorithm by Fraser and Roussel [3–15], the computational singular perturbation (CSP)
method by Lam and Goussis [16–28] and the intrinsic low dimensional method (ILDM) approach by Maas
and Pope [29–40].

The IE, CSP and ILDM methods can all generate approximations of the SIM. For nonlinear problems, IE
and CSP, both iterative algorithms, can in principle provide approximate SIM�s of unlimited precision, their
accuracy being specified by the number of iterations carried out [41,42,45]. In contrast, ILDM provides second
order accuracy [17,42–45], recovering the exact description of the SIM only when the original problem is linear
[17,41].

CSP and ILDM provide directly the simplified non-stiff system, whereas IE does not. For nonlinear sys-
tems, the accuracy of the solution of the simplified problem is determined by the number of iterations when
CSP is employed and is just leading order when ILDM is used [17,45].

The IE iterative algorithm is based on the solution of the so-called invariance equation, for which the
attracting low-dimensional SIM is a fixed point. The algorithm requires the partitioning of the unknowns
(or a linear combination of them) in two sets, one of which parameterizes the SIM. However, no rule is pro-
vided for the identification of these two sets of unknowns nor the possibility that the size or content of these
two sets might be different in various regions of the phase space is faced. The Jacobian of the vector field, say
J, is not explicitly required, but it might be needed when the invariance equation is solved during the itera-
tions. Convergence problems were reported [3,5,9] and different methodologies were proposed to overcome
this problem [9,12–15].

The CSP and ILDM methods are based on the decomposition of the tangent space into fast and slow sub-
spaces; i.e., the subspaces where the fast and slow time scales act, respectively. The two methods provide
approximations of the two subspaces, by producing the appropriate basis vectors. According to CSP, these
vectors are produced by applying a refinement procedure; each refinement resulting in a better approximation
of the fast/slow subspaces. For a nonlinear problem, leading order accuracy requires the Jacobian J and either
(i) one block-power method iteration or (ii) the solution of the eigenvalue problem. If higher than leading
order accuracy is sought, CSP requires a number of additional iterations involving time derivatives of J

[45]. According to ILDM, the basis vectors are the eigenvectors of J. ILDM does not propose a procedure
for improving the leading order accuracy provided by the eigenvectors.

Here, the iterative IE and CSP methods will be considered and their relation will be established. The focus
of this study is the development of an accurate and efficient algorithm for the identification of the SIM and the
construction of the simplified non-stiff system.

After stating the problem, the IE and CSP methods will be briefly reviewed. Then, the extension of the for-
mer to produce simplified non-stiff systems, as CSP does, will be presented. The conditions that establish the
equivalence of the two algorithms will then be stated and analyzed. A new version of CSP will finally be pre-
sented, which results in an algorithm that is much more efficient than the original one, especially in the cases
where SIM�s of very small dimensions emerge and, therefore, large model simplifications are possible. These
developments will be validated using a model problem describing the kinetics of air association/dissociation
processes.
2. Statement of the problem

Consider the N-dimensional stiff system:
dy

dt
¼ gðyÞ; ð1Þ
where the state vector y and the vector field g are N-dimensional column vectors; y = (y1, . . .,yN)T and
g = (g1, . . .,gN)T. It is assumed that Eq. (1) is characterized by a wide range of time scales. This feature is man-
ifested in a large spectral radius of the Jacobian, J, of g, and by the largest eigenvalues of J (in magnitude)
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having a dominant negative real part. We are interested in the time period where the solution evolves on an
(N �M)-dimensional SIM, according to the N �M slower time scales; the M fastest time scales being ex-
hausted. The stiffness of Eq. (1) is guaranteed as long as a wide range of time scales exists and the system
is evolving according to slow ones. It is desired to derive the equation defining the SIM and the simplified
non-stiff system governing the evolution of the system on the SIM.

3. Description of the SIM

Suppose that the SIM is an (N �M)-dimensional surface in the N-dimensional phase space. By definition,
the M fastest time scales associated with all state vectors belonging to this SIM are exhausted. Let this SIM be
parameterized by some N �M, say sj (j = 1,N �M), smooth functions of y:
sj ¼ sjðyÞ ¼ sjðy1; . . . ; yN Þ; j ¼ 1;N �M ð2Þ
so that the state vector on the SIM can be computed from:
yi ¼ yiðsÞ ¼ yiðs1; . . . ; sN�MÞ; i ¼ 1;N ; ð3Þ

where s = (s1, . . ., sN � M)T. Differentiating Eq. (3) with time yields:
dy

dt
¼ Ys

ds
dt
¼ gðyÞ; ð4Þ
where
ds
dt
¼ Sy

dy

dt
¼ SygðyÞ ð5Þ
and Ys and Sy are N · (N �M) and (N �M) · N matrices:
Ys ¼

oy1

os1 . . . oy1

osN�M

..

. ..
.

oyN

os1 . . . oyN

osN�M

2
6664

3
7775; Sy ¼

os1

oy1 . . . os1

oyN

..

. ..
.

osN�M

oy1 . . . osN�M

oyN

2
6664

3
7775
satisfying the relation:
SyYs ¼ Iss;
where Iss is the (N �M) · (N �M) unit matrix. Substituting Eq. (5) in Eq. (4) yields the N-dimensional system
of algebraic equations:
INN � YsSy

� �
gðyÞ ¼ 0. ð6Þ
Only M components of Eq. (6) are linearly independent, enough to describe the SIM. It follows that the solu-
tion on the SIM is governed by the N-dimensional system:
dy

dt
¼ YsSygðyÞ ð7Þ
of which only N �M components are linearly independent. Different forms of Eqs. (6) and (7) are encoun-
tered in CSP and ILDM, as well as in the MIM algorithm for constructing low-dimensional manifolds [46,47].

4. The IE algorithm for identifying the SIM

Let the smooth functions sj be the N �M last components of y:
s ¼ ðyMþ1; . . . ; yN ÞT ð8Þ
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and define the M-dimensional vector z as:
z ¼ y1ðsÞ; . . . ; yMðsÞ
� �T ¼ zðsÞ. ð9Þ
Eq. (6) reduces to:
grðz; sÞ �Gr
sðz; sÞgsðz; sÞ ¼ 0; ð10Þ
where gr = (g1, . . .,gM)T and gs = (gM+1, . . .,gN)T are M- and (N �M)-dimensional vectors consisting of the
first M and last N �M elements, respectively, of the vector field g. The M · (N �M) matrix Gr

s involves the
partial derivatives of the M components of y in z with respect to the remaining N �M components of y in s:
Gr
sðz; sÞ ¼

oz
os
¼

oz1

os1
. . .

oz1

osN�M

..

. ..
.

ozM

os1
. . .

ozM

osN�M

2
66664

3
77775. ð11Þ
Eq. (10) is the ‘‘invariance equation’’, consisting of M equations for M unknowns (the components of z).
According to IE, the (n + 1)th iterate zn+1 can be computed, for a given s and an initial guess zo, from the
implicit equation:
grðznþ1; sÞ �Gr
sðzn; sÞgsðznþ1; sÞ ¼ 0 ð12Þ
or, by virtue of the implicit function theorem, from an explicit functional equation of the general form:
znþ1 ¼ Hðzn; sÞ; ð13Þ

where the derivatives in the matrix Gr

sðzn; sÞ can be approximated numerically, possibly by finite differences
[12,15]. In principle, with every iteration, Eq. (13) provides a description of the (N �M)-dimensional SIM
with increased accuracy [41]. However, the convergence of this process is not guaranteed or might not be
monotonic [3,9,10,12,15]. Of course, convergence depends on the magnitude of the Jacobian:
JH ¼
oHðzn; sÞ

ozn
.

The iterative scheme (13) converges if |JH| < 1, the convergence being monotonic when 0 < JH < 1 and oscil-
latory when �1 < JH < 0 [48]. Different methods were proposed to achieve and stabilize the convergence of the
iterative process, the most used one involving a pseudo-time stepping procedure [12,14,15]:
dz
ds
¼ Hðz; sÞ � z ð14Þ
that either stabilizes the iteration steps (13) [12,14] or provides directly the SIM as the fixed point of Eq. (14)
[15]. Apparently, one can infer that possible causes of the convergence problems are (i) the stiffness of the iter-
ative equation (13), which is also manifested in the dynamics of Eq. (14) [12,15], (ii) a poor condition number
of the matrix Gr

s generated by an incorrect identification of the fast and slow variables [49], yielding a non-
optimal partitioning of y in s and z, (iii) the existence of multiple solutions of the invariance equation and
(iv) the specific form of the function H(zn,s) employed, not satisfying the condition for convergence |JH| < 1.

It is noted here that, to this point, the IE algorithm provides no rules on how to partition the state vector y
in z and s, i.e., in a fast and a slow component, respectively, nor suggests the appropriate form of the function
H(zn,s) so that convergence can be obtained.
5. An algorithm for constructing the simplified system using the Gr
s matrix

The fact that the invariance equation (10) can be cast as:
½Irr;�G
r
s�

grðz; sÞ
gsðz; sÞ

" #
¼ 0 ð15Þ
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suggests the introduction of the matrices:
Ar ¼
Irr �Gr

sR
s
r

�Rs
r

� �
; As ¼

Gr
s

Iss

� �
; ð16Þ

Br ¼ ½Irr;�G
r
s�; Bs ¼ ½Rs

r; I
s
s � Rs

rG
r
s�; ð17Þ
where theM · (N �M) matrix Gr
s was defined by Eq. (11) and the (N �M) · Mmatrix Rs

r will be defined later
when the condition for the non-stiffness of the simplified system is stated. The dimensions of the matrices Ar,
As, B

r and Bs are N · M, N · (N �M), M · N and (N �M) · N, respectively. They satisfy the orthogonality
relations:
½ArAs�
Br

Bs

� �
¼

Br

Bs

� �
ArAs½ � ¼ INN .
With the definitions (16) and (17), the original problem (1) can be cast as:
dy

dt
¼ ArF r þ AsF s ¼

Irr �Gr
sR

s
r

�Rs
r

� �
F r þ

Gr
s

Iss

� �
F s; ð18Þ
where the amplitudes Fr and Fs are defined as:
F r ¼ Brg ¼ ½Irr;�G
r
s�

gr

gs

" #
¼ ðgr �Gr

sg
sÞ; ð19Þ

F s ¼ Bsg ¼ ½Rs
r; I

s
s � Rs

rG
r
s�

gr

gs

" #
¼ Rs

rg
r þ Iss � Rs

rG
r
s

� �
gs. ð20Þ
When the solution is on the manifold, the invariance equation (10) is satisfied and ensures that Fr is identically
zero, that is:
F r ¼ gr �Gr
sg

s ¼ 0 ð21Þ
and therefore, only the ‘‘slow’’ term involving Fs survives in Eq. (18):
dy

dt
¼

Gr
s

Iss

� �
ðRs

rg
r þ ðIss � Rs

rG
r
sÞgsÞ. ð22Þ
Eqs. (21) and (22) define the SIM and the simplified non-stiff equation governing the motion of the solution on
the SIM, respectively. Notice that by employing Eq. (21), Eq. (22) can be further simplified to:
dy

dt
¼

Gr
sg

s

gs

" #
; ð23Þ
i.e., to a form independent of Rs
r. However, as it will be demonstrated next, this way of handling Eq. (21) pro-

vides no guarantee that the simplified system is non-stiff. For example, in the case where both gr and gs con-
tribute to the development of the fast time scales, preference of Eq. (23) instead of Eq. (22) will cause the
stiffness of the original problem to persist in the simplified system.

6. The CSP algorithm

Eq. (18) is similar to the CSP form, according to which Eq. (1) is cast as:
dy

dt
¼ arðbrgÞ þ asðbsgÞ; ð24Þ
where ar, as are N · M, N · (N �M), respectively, matrices containing the fast and slow column CSP vectors,
while the br and bs matrices are M · N and (N �M) · N dimensional and contain the related dual (orthogo-
nal) row vectors. The matrices containing the CSP basis vectors are introduced here in the form:
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ar ¼
arr

asr

� �
; as ¼

ars

ass

� �
; ð25Þ

br ¼ ½brr; brs�; bs ¼ ½bsr; bss�; ð26Þ
where arr and brr are M · M matrices, asr and bsr are (N �M) · M matrices, ars and brs are M · (N �M) matrices
and ass and bss are (N �M) · (N �M) matrices. Eq. (24) can then be cast as:
dy

dt
¼

arr

asr

� �
f r þ

ars

ass

� �
f s; ð27Þ
where
f r ¼ brg ¼ ½brr; brs�
gr

gs

" #
¼ ðbrrgr þ brsg

sÞ; ð28Þ

f s ¼ bsg ¼ bsr; bss
� � gr

gs

" #
¼ ðbsrgr þ bssg

sÞ. ð29Þ
The equations describing the SIM and the simplified non-stiff system are then:
brrg
r þ brsg

s ¼ 0; ð30Þ
dy

dt
¼

ars

ass

� �
ðbsrgr þ bssg

sÞ. ð31Þ
The solution on the SIM can be computed either from the M algebraic equations (30) and N �M components
of the differential equation (31) or from all the N components of Eq. (31) [26]. If the former approach is em-
ployed, the M components of y that will be computed from Eq. (30) are identified by the CSP pointer [18,19],
i.e., the M largest components of the N-dimensional vector qr:
qr ¼ diag
1

M
arb

r

� �
. ð32Þ
Such a choice guarantees that the algebraic equation (30) provides a solution of the highest accuracy [28].
According to CSP, the basis vectors that provide an exact representation of the fast and slow subspaces obey
the evolution equations [17]:
dbr

dt
þ brJ ¼ krrb

r; ð33Þ

� dar
dt
þ Jar ¼ ark

r
r; ð34Þ

dbs

dt
þ bsJ ¼ kssb

s; ð35Þ

� das
dt
þ Jas ¼ ask

s
s; ð36Þ
where
krr ¼
dbr

dt
þ brJ

� �
ar; kss ¼

dbs

dt
þ bsJ

� �
as. ð37Þ
The CSP basis vectors are computed from Eqs. (33)–(36) using two refinement processes, the br-refinement
[17]:
brðk1 þ 1;m1Þ ¼ srrðk1;m1Þ brðk1;m1ÞJþ
dbrðk1;m1Þ

dt

� �
;

arðk1 þ 1;m1Þ ¼ arðk1;m1Þ;
bsðk1 þ 1;m1Þ ¼ bsðk1;m1Þ;
asðk1 þ 1;m1Þ ¼ Irr � arðk1 þ 1;m1Þbrðk1 þ 1;m1Þ

� �
asðk1;m1Þ

ð38Þ
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and the ar-refinement:
brðk2;m2 þ 1Þ ¼ brðk2;m2Þ;

arðk2;m2 þ 1Þ ¼ Jarðk2;m2Þ �
darðk2;m2Þ

dt

� �
srrðk2;m2Þ;

bsðk2;m2 þ 1Þ ¼ bsðk2;m2Þ Irr � arðk2;m2 þ 1Þbrðk2;m2 þ 1Þ
� �

;

asðk2;m2 þ 1Þ ¼ asðk2;m2Þ;

ð39Þ
where
srrðki;miÞ ¼ brðki;miÞJþ
dbrðki;miÞ

dt

� �
arðki;miÞ

� ��1
.

The refinement (38) increases the accuracy in the description of the SIM and the solution of the simplified non-
stiff problem, while the refinement (39) guarantees the non-stiffness of the simplified system [17–21,26,42,43].
The subscripts ‘‘1’’ and ‘‘2’’ in the indices ‘‘k’’ and ‘‘m’’ denote the fact that the two refinements are indepen-
dent of each other [17,26,45], preserving the orthogonality of the basis vectors:
½arði; jÞasði; jÞ�
brði; jÞ
bsði; jÞ

� �
¼

brði; jÞ
bsði; jÞ

� �
½arði; jÞasði; jÞ� ¼ INN ; ð40Þ
where (i ,j) = (k1+1,m1) or (i, j) = (k2,m2 + 1).
For completeness, it is noted here that according to ILDM, the basis vectors are the eigenvectors of the

Jacobian matrix of the vector field:
br

bs

� �
J ¼

lr
r 0rs

0sr ls
s

� �
br

bs

� �
; J ar as½ � ¼ ar as½ �

lr
r 0rs

0sr ls
s

� �
;

where lr
r and ls

s are M · M and (N �M) · (N �M), respectively, diagonal matrices, with the M largest and
N �M smallest eigenvalues of J. These vectors satisfy Eqs. (38) and (39), if the time derivative terms are
neglected, and provide second and leading order accuracy in the description of the SIM and the solution of
the simplified non-stiff problem, respectively [17,41,42,44,45].

7. The equivalence of the two algorithms for the construction of the simplified system

It is straightforward to show that the two forms of the original equation (1), i.e., Eqs. (18) and (27), are
identical if:
Gr
s ¼ ars ass

� ��1 ¼ � brr
� ��1

brs; ð41Þ
Rs

r ¼ assb
s
r ¼ �asrbrr ð42Þ
provided that ðbrrÞ
�1 and ðassÞ

�1 exist. It is then easy to show that the equations describing the SIM and the
simplified non-stiff problem generated by Eqs. (21), (22) and (30), (31):
gr �Gr
sg

s ¼ 0; ð43Þ
dy

dt
¼

Gr
s

Iss

� �
Rs

rg
r þ Iss � Rs

rG
r
s

� �
gs

	 

; ð44Þ

brrg
r þ brsg

s ¼ 0; ð45Þ
dy

dt
¼

ars

ass

� �
bsrg

r þ bssg
s

	 

ð46Þ
are also identical. In order to explore the meaning of the two transformations, Eqs. (41) and (42), it is noted
that use of Eq. (41) yields the following relations between the new basis vectors introduced here, Eqs. (16) and
(17), and the CSP basis vectors:
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Br ¼ brr
� ��1

br; Ar ¼ arb
r
r þ asN

s
r;

Bs ¼Ms
rb

r þ assb
s; As ¼ as ass

� ��1
;

where
Ns
r ¼ �ðassÞ

�1½Rs
r þ asrb

r
r�; Ms

r ¼ ½Rs
r þ asrb

r
r�ðbrrÞ

�1
;

i.e., the vectors in Br and As span the same subspaces as those in br and as do, respectively; the latter two sets
being the ones affected by the CSP br-refinement, Eq. (38). However, the vectors in Bs and Ar do not span the
subspaces spanned by the vectors in bs and ar, respectively; the latter two sets being the ones affected by the
CSP ar-refinement, Eq. (39).

On the other hand, by replacing the matrix Rs
r as defined by Eq. (42) into the definitions of the new set of

basis vectors, Eqs. (16) and (17), we have:
Br ¼ ½Irr;�G
r
s�; Ar ¼ arb

r
r þ

ars �Gr
sa

s
s

� �
bsr

0sr

" #
;

Bs ¼ 0sr; a
s
r brrG

r
s þ brs

� �� �
þ assb

s; As ¼
Gr

s

Iss

� �
;

i.e., no set of vectors in Br, As, B
s and Ar spans the same subspace as the sets of vectors in br, as, b

s and ar,
respectively, do.

When the transformation equation (41) is employed, the invariance equation, Eq. (43), can provide an exact
identification of the SIM as the converged CSP br-refinement does. However, the simplified non-stiff system
constructed by CSP cannot be reproduced. This is achieved when both transformations equations (41) and
(42) are employed, in which case the CSP basis vectors and the ones introduced here are related by the
expressions:
Br

Bs

� �
¼ brr

� ��1
0rs

0sr ass

" #
br

bs

� �
; ð47Þ

½ArAs� ¼ ½ar as�
brr 0rs

0sr ass
� ��1

" #
ð48Þ
showing that the vectors in Br, As, B
s and Ar are just the CSP basis vectors br, as, b

s and ar, respectively, re-
scaled as shown. These new vectors define a modified version of the CSP method, which can be employed only
when the state vector y is properly partitioned into the s and z components.

For the identification of the SIM and the construction of the simplified system, Eqs. (43) and (44), this mod-
ified CSP algorithm requires the computation of the Gr

s and Rs
r matrices. These issues are discussed next.

8. The computation of the matrix Gr
s

The matrix Gr
s can in principle be computed in a number of ways, which might exhibit numerical difficulties

[5,9,12–15]. An alternative method for computing Gr
s can be obtained by differentiating the invariance equa-

tion Br g = 0 with respect to time:
Kr
rF

r þ Kr
sF

s ¼ 0; ð49Þ

where
Kr
r ¼

dBr

dt
þ BrJ

� �
Ar; Kr

s ¼
dBr

dt
þ BrJ

� �
As ð50Þ
from which follows:
dBr

dt
þ BrJ ¼ Kr

rB
r þ Kr

sB
s. ð51Þ
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Since on the manifold F r = Brg = 0 and since F s 6¼ 0, Eq. (49) suggests that Kr
s ¼ 0rs so that Eq. (51) reduces to:
dBr

dt
þ BrJ ¼ Kr

rB
r. ð52Þ
Note that this equation is similar to the one governing the evolution of the CSP vectors br, Eq. (33). Using the
definition for Br, Eq. (17), and casting the Jacobian J of the vector field g in the form:
J ¼
Jr
r Jr

s

Js
r Js

s

� �
. ð53Þ
Eq. (52) yields the vector equation:
0rr;�
dGr

s

dt

� �
þ Jr

r �Gr
sJ

s
r; J

r
s �Gr

sJ
s
s

� �
¼ Kr

r Irr;�G
r
s

� �
ð54Þ
the two components of which produce:
Jr
r �Gr

sJ
s
r ¼ Kr

r; ð55Þ
dGr

s

dt
þGr

sJ
s
s � Jr

s ¼ Kr
rG

r
s ð56Þ
so that the following evolution equation for Gr
s is obtained:
dGr
s

dt
þGr

sJ
s
s � Jr

s ¼ Jr
r �Gr

sJ
s
r

� �
Gr

s. ð57Þ
Eq. (57), being stiff, can be solved iteratively as:
Gr
sðnþ 1Þ ¼ Jr

r �Gr
sðnÞJ

s
r

� ��1
Gr

sðnÞJ
s
s � Jr

s þ
dGr

sðnÞ
dt

� �
. ð58Þ
Note that, starting with Gr
sð0Þ ¼ 0rs, Eq. (58) yields:
Gr
sð1Þ ¼ � Jr

r

� ��1
Jr
s;
i.e., the outcome of one block-power method iteration on J for computing the left eigenvectors, when starting
with Br ¼ ½Irr; 0

r
s� and using Ar ¼ ½Irr; 0

r
s�
T [50].

Having developed the evolution equation (57) for Gr
s, a direct proof that the CSP algorithm and its varia-

tion presented here can describe the SIM with similar accuracy can be obtained as follows. Considering the
fast CSP dual vectors in the form br ¼ ½brr; brs�, the evolution equation (33) yields:
d brr; b
r
s

� �
dt

þ brr; b
r
s

� �
J ¼ krr brr; b

r
s

� �

the two components of which produce:
dbrr
dt
þ brrJ

r
r þ brsJ

s
r ¼ krrb

r
r; ð59Þ

dbrs
dt
þ brrJ

r
s þ brsJ

s
s ¼ krrb

r
s. ð60Þ
Pre-multiplying Eq. (60) with ðbrrÞ
�1 yields:
d brr
� ��1

brs

h i
dt

þ brr
� ��1

brsJ
s
s þ Jr

s ¼
d brr
� ��1
dt

brr þ brr
� ��1

krrb
r
r

 !
brr
� ��1

brs.
Substituting from Eq. (59) results:
d brr
� ��1

brs

h i
dt

þ brr
� ��1

brsJ
s
s þ Jr

s ¼ Jr
r þ brr
� ��1

brsJ
s
r

	 

brr
� ��1

brs.
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Introducing the transformation (41), i.e., Gr
s ¼ �ðb

r
rÞ
�1
brs, the evolution equation for Gr

s, Eq. (57), is recovered.
Regarding the description of the SIM, this shows that both the evolution equations for br and Gr

s, Eqs. (33)
and (57), provide an exact representation. Their iterative counterparts, Eqs. (38) and (58), are expected to pro-
vide an approximate description of similar accuracy for the same number of refinements; the possible differ-
ences in accuracy related to the initial guesses for the iterative procedures.

9. The computation of the matrix Rs
r

The evolution of the slow amplitudes Fs is governed by the equation:
dF s

dt
¼ Ks

rF
r þ Ks

sF
s; ð61Þ
where
Ks
r ¼

dBs

dt
þ BsJ

� �
Ar; Ks

s ¼
dBs

dt
þ BsJ

� �
As. ð62Þ
In order for the fast time scales not to have an influence on the evolution of Fs is desired that Ks
r ¼ 0sr. In that

case, in accordance with the evolution equation for Br, Eq. (52), the following equation for Ar holds:
� dAr

dt
þ JAr ¼ ArK

r
r. ð63Þ
Note that this equation is similar to the one governing the evolution of the CSP vectors ar, Eq. (34).
Substituting from the definition of Ar, Eq. (16), the following evolution equation for the matrix Rs

r is
obtained:
dRs
r

dt
þ Js

r Irr �Gr
sR

s
r

� �
� Js

sR
s
r ¼ �Rs

rK
r
r; ð64Þ
where Kr
r is defined by Eq. (55). Since Eq. (64) is stiff, Rs

r can be computed iteratively by the expression:
Rs
rðjþ 1Þ ¼ Js

sR
s
rðjÞ � Js

r Irr �Gr
sðnÞRs

rðjÞ
� �

� dRs
rðjÞ
dt

� �
Kr

rðnÞ
� ��1

; ð65Þ
where Kr
rðnÞ ¼ Jr

r �Gr
sðnÞJs

r. Note that, starting with Rs
rð0Þ ¼ 0sr, Eq. (65) yields:
Rs
rð1Þ ¼ �Js

r Jr
r �Gr

sðnÞJs
r

� ��1
;

i.e., the outcome of one block-power method iteration on J for computing the right eigenvectors, when start-
ing with Ar ¼ ½Irr; 0

r
s�
T and using Br ¼ ½Irr;�G

r
sðnÞ� [50].

10. Partitioning of the unknowns in fast and slow components

The optimal partition of the state vector y = (y1, . . .,yN) into a fast and a slow component, i.e.,
z = (y1, . . .,yM) and s = (yM + 1, . . .,yN) must be based on the quantities:
jbi � ek ykj; ð66Þ
jek � ai=ykj; ð67Þ
where i = 1,M, ek and ek are N-dimensional column and row, respectively, vectors with all elements zero but
the kth, which is set equal to 1. It was shown that the largest the magnitude of the quantity (66) the more sig-
nificant is the participation of yk in the ith component of Eq. (30) defining the SIM [28]. In addition, it was
shown that the larger the magnitude of the quantity (67) the larger the influence of the ith time scale on yk [28].
It was concluded that the M yks exhibiting the strongest (i) participation in the M components of Eq. (30) and
(ii) influence from the M fastest time scales are those indicated by the largest elements of the CSP pointer, Eq.
(32), which can be cast as [18,19]:
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qr ¼ diag
1

M
arb

r

� �
¼ 1

M

diagðarrb
r
rÞ

diagðasrbrsÞ

� �
.

Due to the orthogonality condition, Eq. (40):
1

M

X
i¼1;M

arrb
r
r

� �i
i
þ

X
j¼1;N�M

asrb
r
s

� �j
j

" #
¼ 1
so that the sum of all N components in qr equal unity. The CSP pointer provides a measure of how parallel the
N axes of the unknowns are to the M vectors in ar, along which the M fastest time scales act [18,19]. The M

components of y corresponding to the largest (in magnitude) elements of qr constitute the optimal set of un-
knowns to be computed from the algebraic equations (30) in terms of the remaining N �M ones [18,19,28].

Having assumed that it is desired to parameterize the SIM by the N �M last components of y, the elements
in the M diagonal entries of the M · M matrix arrb

r
r are expected to be among the largest. In particular, when

all N components of y are fast, diag ðarrb
r
rÞ ¼ Oð1Þ and diag ðasrb

r
sÞ ¼ Oð1Þ. However, when only the M compo-

nents of y in z are fast and the N �M components in s are slow, diag ðarrb
r
rÞ ! 1 and diag ðasrb

r
sÞ ! 0. In any

case, these estimates of the magnitude of the matrix product arrb
r
r indicate that the matrices brr and ass are invert-

ible (the latter using Eq. (40)). This means that, with proper partitioning of y in z and s, the transformations
(41) and (42) exist and the matrix Gr

s can be computed.
In terms of the basis vectors of the modified CSP algorithm, Eqs. (16) and (17), the CSP pointer takes the

form:
Qr ¼ diag
1

M
ArB

r

� �
¼ 1

M

diag Irr �Gr
sR

s
r

� �
diag Rs

rG
r
s

� �
" #

; ð68Þ
where the diagonal elements of the matrices Gr
sR

s
r and Rs

rG
r
s satisfy the relation:
X
i¼1;M

Gr
sR

s
r

� �i
i
¼

X
j¼1;N�M

Rs
rG

r
s

� �j
j
.

Since Qr and qr are identical, via the transformations (41) and (42), is expected that Qr will identify the M fast
components of y as accurately as qr does. As a result, in the case where only the M components of y in z are
fast, it is anticipated that the diagonal elements of Gr

sR
s
r and Rs

rG
r
s will be negligible:
Gr
sR

s
r

� �i
i

��� ���� 1; i ¼ 1;M ;

Rs
rG

r
s

� �i
i

��� ���� 1; i ¼ 1;N �M .
11. Example: the Lindemann mechanism

Consider the problem:
yt ¼
z
e
ðz� yÞ � y; yð0Þ ¼ y�; zt ¼ �

z
e
ðz� yÞ; zð0Þ ¼ z�; ð69Þ
where 0 < e� 1 and the subscript ‘‘t’’ denotes differentiation with time. This model problem has been em-
ployed for the study of association/dissociation kinetics [51–57].

Eqs. (69) are stiff, characterized by two time scales; one fast and one slow. A typical solution for y and z is
shown in Fig. 1 for e = 10�3. The trajectory starts at (y*,z*) = (1,4), heading towards the fixed point
(y,z) = (0,0). It can be shown that, after a fast initial transient which lasts for a period O(e), under the action
of the fast time scale the solution is attracted to a manifold defined by the relation y � z � e/2 + e2/(4z). On
the manifold, the fast time scale is exhausted and the solution is directed towards the fixed point according to
the slow scale. However, the manifold degenerates as y and z become O(e), re-emerging further in time as
ey � z2 + z3/e � 5z5/e3 and extending in this form to the fixed point.
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Fig. 1. The solution for e = 10�3, y
*
= 1 and z

*
= 4.

D.A. Goussis, M. Valorani / Journal of Computational Physics 214 (2006) 316–346 327
The two different representations of the manifold and their validity are clearly displayed in Fig. 2, where the
ratios:
R1 ¼
y
z
; R2 ¼

ey
z2
are plotted. It is shown that after an initial short period of O(e) and for a period that lasts up to t = O(101),
R1! 1 and R2� 1, signaling the fact that the manifold has the y � z representation. From about
t = O(5 · 101) and on, R1� 1 and R2! 1, indicating that the manifold has now the �y � z2 representation.
In the intermediate period, neither of the representations hold; a natural consequence due to the degeneracy of
the manifold.

The reasons for the generation of the manifold in the first part of the outer region, its degeneration and
subsequent re-generation in the second part are all manifested in the evolution of the two time scales of the
system. Approximating the time scales with the inverse of the eigenvalues of the Jacobian of the RHS of
Eq. (69) yield:
s1 ¼
1

jk1j
¼ 2e

d þ
ffiffiffi
b
p ; s2 ¼

1

jk2j
¼ 2e

d �
ffiffiffi
b
p ;
where the subscripts ‘‘1’’ and ‘‘2’’ denote the fast and slow, respectively, time scales and where:
b ¼ ðy � zþ eÞ2 þ 8z2 � 4zy; d ¼ 3z� y þ e.
Fig. 3 shows that, in the first part of the outer region where y and z are O(1) and the y � z manifold emerges,
the time scale gap developed:
s1 ! e=2z; s2 ! 2 ð70Þ

disappears during the period where y and z become smaller than O(e) and the manifold degenerates, yielding:
s1 ¼ Oð1Þ; s2 ¼ Oð1Þ ð71Þ

after which period, as y and z become much smaller than O(e) and the �y � z2 manifold emerges, a new time
scale gap is established tending to:
s1 ! 1; s2 ! e=2z. ð72Þ

In the following, Eqs. (69) will be analyzed using the classical singular perturbation analysis, the original CSP
algorithm and its modified version presented above.
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Fig. 2. The two types of manifolds generated in the outer region; R1 = 1 for O(�) < t < O(101) and R2 = 1 for O(2 · 101) < t.
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11.1. Singular perturbation analysis

Assuming y* and z* are both O(1), the fast and slow time scales, Eqs. (70), are O(e) and O(1) respectively,
throughout the fast initial transient and the first part of the outer region. In that period, both variables are
affected by the fast time scale; i.e., they are both ‘‘fast’’. However, their sum w = y + z is affected by the slow
time scale only and a transformed system can be stated as:
wt ¼ �wþ z; zt ¼ �
z
e
ð2z� wÞ ð73Þ
so that only variable z is associated with the fast time scale. For the particular problem examined here, clas-
sical singular perturbation analysis fails if the original form (69) of the problem is considered, but works if the
transformed one (73) is employed instead. By doing so and assuming that the variables can be expanded in
terms of the time scale ratio s1/s2 = O(e), as:
y ¼ y0 þ ey1 þOðe2Þ; z ¼ z0 þ ez1 þOðe2Þ ð74Þ
time
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Fig. 3. The two time scales; e = 10�3.
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yields:
y0 � z0 ¼ 0; y0t ¼ �
1

2
y0; z0t ¼ �

1

2
z0; ð75Þ

y1 � z1 þ
1

2
¼ 0; y1t ¼ �

1

2
z1 þ

1

4
; z1t ¼ �

1

2
z1 þ

1

4
. ð76Þ
From Eqs. (74)–(76), follows that the SIM and the simplified non-stiff problem in the outer region are
described to O(e1) accuracy by the expressions:
y � z � 0; ð77Þ
y

z

� �
t

�
1

1

� �
� 1

2
z

� �
ð78Þ
and to O(e2) accuracy by the expressions:
y � zþ e
2
� 0; ð79Þ

y

z

� �
t

�
1

1

� �
� 1

2
zþ e

4

� �
. ð80Þ
However, the expansion (74) fails when the variables y and z become small, as the system approaches the fixed
point. In fact, in the period where y � z = O(e) there is no time scale separation, i.e., s1/s2 = O(1), Eq. (71). In
that period, the scalings y ¼ e�y and z ¼ e�zmake the small parameter e disappear from the governing equations,
the problem is not stiff and the SIM degenerates. Further in time, when y and z become smaller than O(e) and
a new time scale gap appears, Eq. (72), a different representation of the SIM emerges. This can be found, by
introducing the scalings:
y ¼ a2

e
Y ; z ¼ aZ; t ¼ e

a
s; ð81Þ
where 0 < a� e is a small parameter indicative of the magnitude of z. With these transformations, the given
system (69) is cast as:
Y s ¼
Z
x

Z � xYð Þ � 1

x
Y ; Zs ¼ �Z Z � xYð Þ; ð82Þ
where x = a/e� 1. Assuming that the new variables can be expanded as:
Y ¼ Y 0 þ xY 1 þOðx2Þ; Z ¼ Z0 þ xZ1 þOðx2Þ ð83Þ

and substituting in Eqs. (82) yields:
Y 0 ¼ Z2
0; Y 0s ¼ �2Z3

0; Z0s ¼ �Z2
0; ð84Þ

Y 1 ¼ Z0 Z2
0 þ 2Z1

� �
; Y 1s ¼ �Z2

0 Z2
0 þ 6Z1

� �
; Z1s ¼ Z0 Z2

0 � 2Z1

� �
. ð85Þ
From Eqs. (83)–(85), follows that the SIM and the simplified non-stiff problem in the second part of the outer
region are described to O(x1) accuracy by the expressions:
Y � Z2; ð86Þ
Y

Z

� �
s

� �2Z3

�Z2

" #
ð87Þ
and to O(x2) accuracy by the expressions:
Y � Z2 þ xZ3; ð88Þ
Y

Z

� �
s

� �2Z3 � xZ4

�Z2 þ xZ3

" #
. ð89Þ
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In terms of the original variables, Eqs. (88) and (89) become:
ey � z2 þ 1

e
z3; ð90Þ

y

z

� �
t

�
� 2

e2
z3 � 1

e3
z4

� 1

e
z2 þ 1

e2
z3

2
664

3
775. ð91Þ
When compared to Eqs. (79) and (80), Eqs. (90) and (91) show that completely different representations of the
manifold and the simplified system result in the first and second parts of the outer region.

11.2. The CSP method

According to CSP, the system (69) is cast in the form:
d

dt

y

z

� �
¼ a1ðk;mÞf 1ðk;mÞ þ a2ðk;mÞf 2ðk;mÞ;
where
f 1ðk;mÞ ¼ b1ðk;mÞg; f 2ðk;mÞ ¼ b2ðk;mÞg
and (k,m) are the number of br- and ar-refinements. The SIM and the simplified non-stiff problem are then
described by the equations:
f 1ðk;mÞ ¼ 0; ð92Þ
d

dt

y

z

� �
¼ a2ðk;mÞf 2ðk;mÞ. ð93Þ
Starting the CSP refinements with the following sets of basis vectors:
a1ð0; 0Þ ¼
1

0

� �
; a2ð0; 0Þ ¼

0

1

� �
;

b1ð0; 0Þ ¼ ½1; 0�; b2ð0; 0Þ ¼ ½0; 1�
one br- and one ar-refinement yield:
a1ð1; 1Þ ¼
ðzþ eÞq
�zq

� �
; a2ð1; 1Þ ¼

p

1

� �
; ð94Þ

b1ð1; 1Þ ¼ ½1;�p�; b2ð1; 1Þ ¼ ½zq; 1� zqp�; ð95Þ

f 1ð1; 1Þ ¼ z
e
ðz� yÞð1þ pÞ � y; ð96Þ

f 2ð1; 1Þ ¼ � z2ðzþ eÞ
zþ eð Þ2 þ z 2z� yð Þ

; ð97Þ
where p = (2z � y)/(z + e), q = (z + e)/((z + e)2 + z(2z � y)). An additional br-refinement yields:
a1ð2; 1Þ ¼
ðzþ eÞq
�zq

� �
; a2ð2; 1Þ ¼

sv

su

� �
; ð98Þ

b1ð2; 1Þ ¼ u
w
½u;�v�; b2ð2; 1Þ ¼ ½zq; 1� zqp�; ð99Þ

f 1ð2; 1Þ ¼ u
w

z
e
ðz� yÞðuþ vÞ � uy

	 

; ð100Þ

f 2ð2; 1Þ ¼ � z2 zþ eð Þ
zþ eð Þ2 þ z 2z� yð Þ

; ð101Þ
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where

u ¼ zð3z� yÞ þ 2ezþ e2;

v ¼ ðz2ð7z� 5yÞ þ eðy2 � 10yzþ 11z2Þ þ 2e2ðz� yÞÞ=ðzþ eÞ;
w ¼ 2z3ð5z� 3yÞ þ ezðy2 � 12yzþ 19z2Þ þ e2zð10z� 3yÞ þ 4e3zþ e4;
s ¼ 1= zqvþ ð1� zqpÞuð Þ.
If leading order accuracy is desired, the basis vectors (94) and (95), obtained with one ar- and one br-refine-
ments, must be employed along with the relation f1(1,1) = 0. In that case, when y = O(1) and z = O(1) and the
solution lies on the SIM expressed by the relation y = z � e/2 + e2 /(4z) + O(e3K), where the term O(e3K) in-
cludes all higher order terms, the CSP vectors, the CSP amplitudes and the simplified problem are:
a1ð1; 1Þ ¼
1

2

1þ 3e
4z
� 5e2

16z2

�1þ e
4z
þ e2

16z2

2
664

3
775þOðe3Þ; a2ð1; 1Þ ¼ 1� e

2z
þ e2

4z2
1

2
4

3
5þOðe3Þ;

b1ð1; 1Þ ¼ 1;�1þ e
2z
� e2

4z2

� �
þOðe3Þ;

b2ð1; 1Þ ¼ 1

2
1� e

4z
� e2

16z2
; 1þ 3e

4z
� 5e2

16z2

� �
þOðe3Þ;

f 1ð1; 1Þ ¼ � e
8
þOðe2Þ; f 2ð1; 1Þ ¼ � z

2
þ e
8
þ e2

32z
þOðe3Þ;

d

dt
y
z

� �
¼
� z
2
þ 3e

8
� 5e2

32z

� z
2
þ e
8
þ e2

32z

2
664

3
775þOðe3Þ.
When z = aZ, y = a2Y/e, t = es/a, x = a/e� 1 and the solution lies on the SIM expressed by the relation
Y = Z2 + xZ3 + O(x3K), where the term O(x3K) includes all higher order terms, the related CSP quantities
become: � � � �
a1ð1; 1Þ ¼
1� 2x2Z2

�x2Z
þOðx3Þ; a2ð1; 1Þ ¼

2Z � 3xZ2 þ 2x2Z3

1
þOðx3Þ;

b1ð1; 1Þ ¼ 1;�2Z þ 3xZ2 � 2x2Z3
� �

þOðx3Þ;
b2ð1; 1Þ ¼ x2Z; 1� 2x2Z2

� �
þOðx3Þ;

f 1ð1; 1Þ ¼ �6xZ4 þ 8x2Z5 þOðx3Þ; f 2ð1; 1Þ ¼ �Z2 þ xZ3 þ x2Z4 þOðx3Þ;
d

ds

Y
Z

� �
¼ �2Z3 þ 5xZ4 � 3x2Z5

�Z2 þ xZ3 þ x2Z4

� �
þOðx3Þ.
It is seen that CSP recovers the singular perturbation analysis leading order results for both parts in the outer
region, Eqs. (77), (78) and (86), (87).

If second order accuracy is desired, the basis vectors (98) and (99), obtained with one ar- and two br-refine-
ments, must be employed along with the relation f1(2,1) = 0. In that case, when y = O(1), z = O(1) and the
solution lies on the SIM y = z � e/2 + e2/(4z) + O(e3K), the CSP vectors, the CSP amplitudes and the simpli-
fied problem become:
a1ð2; 1Þ ¼
1þ 3e

4z
� 5e2

16z2

�1þ e
4z
þ e2

16z2

2
664

3
775þOðe3Þ; a2ð2; 1Þ ¼

1� e
4z
þ e2

8z2

1� e
4z
þ 3e2

8z2

2
664

3
775þOðe3Þ;

b1ð2; 1Þ ¼ 1

2
1� e

4z
þ 3e2

8z2
;�1þ e

4z
� e2

8z2

� �
þOðe3Þ;

b2ð2; 1Þ ¼ 1

2
1� e

4z
� e2

16z2
; 1þ 3e

4z
� 5e2

16z2

� �
þOðe3Þ;
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f 1ð2; 1Þ ¼ �ð3
z
þ KzÞe2 þOðe3Þ; f 2ð1; 1Þ ¼ � z

2
þ e
8
þ e2

32z
þOðe3Þ;

d

dt

y

z

� �
¼
� z
2
þ e
4
þ e2

16z

� z
2
þ e
4
� 3e2

16z

2
664

3
775þOðe3Þ.
When z = aZ, y = a2Y/e, t = es/a, x = a/e� 1 and the solution lies on the SIM Y = Z2 + xZ3 + O(x3K), the
related CSP quantities yield:
a1ð2; 1Þ ¼
1� 2x2Z2

�x2Z

" #
þOðx3Þ; a2ð2; 1Þ ¼

2Z þ 3xZ2 � 24x2Z3

1

" #
þOðx3Þ;

b1ð2; 1Þ ¼ 1;�2Z � 3xZ2 þ 24x2Z3
� �

þOðx3Þ;
b2ð2; 1Þ ¼ x2Z; 1� 2x2Z2

� �
þOðx3Þ;

f 1ð2; 1Þ ¼ �24x2Z5 þOðx3Þ; f 2ð2; 1Þ ¼ �Z2 þ xZ3 þ x2Z4 þOðx3Þ;

d

ds

Y

Z

� �
¼ �2Z3 � xZ4 þ 29x2Z5

�Z2 þ xZ3 þ x2Z4

" #
þOðx3Þ.
Again, it is seen that CSP recovers the singular perturbation analysis second order results for both parts in the
outer region, Eqs. (79), (80) and (88), (89).

The evolution of the amplitudes f1(1,1) and f1(2,1) with time, computed from Eqs. (96) and (100), respec-
tively, is displayed in Fig. 4, where the improvement in approximating the SIM with an additional br-refine-
ment is clearly demonstrated. In particular, it is shown that better accuracy is achieved when employing the
relation f1(2,1) = 0 than when employing the relation f1(1,1) = 0, since the value of f1(2,1) is indeed smaller
than that of f1(1,1), in accordance to the existing time scale separation. The fuzziness in f1(2,1) in the first part
of the outer region, where y and z are both O(1), is due to the truncation error caused by large cancellations
among the different terms in the expression of f1. In the second part of the outer region the cancellations are
milder; the decay of the magnitude of the different terms making-up f1 contributing to its demise.

Regarding the CSP pointer, Eq. (32), the CSP basis vectors (98) and (99) provide:
q1 ¼ diag½a1b1� ¼ ½d1; d2� ¼ ðzþ eÞqu2
w

;
zquv
w

� �
; ð102Þ
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Fig. 4. The CSP fast amplitude f1 (1 or 2 br- and 1 ar-refinements); e = 10�3.
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where d1 + d2 = 1. In the first part of the outer region, where the SIM takes the form z�y + e/2, Eq. (102)
reduces to:
q1 � 1

2
;
1

2

� �
. ð103Þ
Noting that y = [y,z]T, Eq. (103) indicates that both variables, y and z, can be identified as fast. However, in
the second part of the outer region, where the SIM takes the form ey � z2 + z3/e, Eq. (102) reduces to:
q1 � ½1; 0� ð104Þ
indicating that only variable y can be identified as fast. The evolution of the two components of q1 = [d1,d2] is
displayed in Fig. 5, where the adjustment of the CSP pointer in the first and the second parts of the outer re-
gion, as noted by Eqs. (103) and (104), is clearly displayed.

The problems that might arise when a wrong identification for the fast variable is made can be illustrated by
considering the second part of the outer region where y is the fast variable, z is the slow, ey � z2 + z3/e and
y� e, z� e. In terms of the original variables, if y is chosen as the fast variable Eqs. (92) and (93) reduce to:
y � z2

e
; ð105Þ

dz
dt
� �y ð106Þ
while if z is chosen, instead, they reduce to:
z � ffiffiffiffiffi
ey
p

; ð107Þ
dy
dt
� � 2yz

e
. ð108Þ
Introducing an error, say f:
z ¼ zo þ f; y ¼ yo þ f
in the computation of z and y, originating from the differential equations (106) and (108), respectively, will
produce the following perturbations in y and z, as computed from the related algebraic equations (105)
and (107):
time

d
1,

d 2
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Fig. 5. The two components of the CSP pointer q1 = [d1,d2]; e = 10�3.
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y ¼ yo 1þ 2

zo
f

� �
; z ¼ zo 1þ 1

2yo
f

� �
;

where eyo � z2o. Since yo < < zo, it is clear that the same error from the differential equations (106) and (108)
will be amplified much more in the algebraic equation (107) than in Eq. (105); i.e., when the wrong choice is
made for the fast variable and z is selected instead of y.

11.3. The modified CSP algorithm

According to the modified CSP algorithm, a fast and a slow variable selection must be made, prior to its
application. Here, the cases where each of the two variables, y or z, is identified as the fast one will be con-
sidered, in order to display the problems that might arise from a wrong selection.

A key ingredient of the modified CSP algorithm is the computation of Gr
s either from the differential equa-

tion (57) or the iterative equation (58). Note that the correct expressions in the first part of the outer region,
where the SIM is described by the relation y = z�e/2 + e2/(4z) + O(e3), are:
Gy ¼ 1þ e
2z

	 
2
þOðe3Þ; ð109Þ

Gz ¼ 1� e
2z

	 
2
þOðe3Þ; ð110Þ
where Gy = oz/oy and Gz = oy/oz. In the second part of the outer region, where the SIM is described by the
relation Y = Z2 + xZ3 + O(x3), the correct expressions are:
GY ¼
1

2Z
� 3x

4
þOðx2Þ; ð111Þ

GZ ¼ 2Z þ 3xZ2 þOðx2Þ; ð112Þ
where GY = oZ/oY, GZ = oY/oZ, GY = xGy and GZ = Gz/x.
Assuming that z is the fast variable and y is the slow one, the differential equation (57) and the iterative

relation (58) for Gy take the form:
dGy

dt
þ �z� e

e

	 

Gy �

z
e
¼ � 2z� y

e
ð1þ GyÞ

� �
Gy ; ð113Þ

Gyðnþ 1Þ ¼ e
ð2z� yÞð1þ GyðnÞÞ

zþ e
e

	 

GyðnÞ þ

z
e
� dGyðnÞ

dt

� �
. ð114Þ
Starting with Gy(0) = 0, Eq. (114) yields:
Gyð1Þ ¼
z

2z� y
; Gyð2Þ ¼

z
2z� y

1� p1
q1

� �
; ð115Þ
where p1 = z2 � y2 � 2ez and q1 = (2z � y)(3z � y).
In the first part of the outer region, where y � O(1), z � O(1) and y = z�e/2 + e2/(4z) + O(e3), Eqs. (115)

yield:
Gyð1Þ ¼ 1� e
2z
þOðe2Þ; ð116Þ

Gyð2Þ ¼ 1þ e
2z

	 
2
þOðe3Þ. ð117Þ
When compared to the correct expression, Eq. (109), Eqs. (116) and (117) are O(e1) and O(e2) accurate; each
iteration with Eq. (114) adding one degree of accuracy. In the second part of the outer region, where y = ex2Y,
z = exZ and Y = Z2 + xZ3 + O(x3), Eqs. (115) yield:
GY ð1Þ ¼
x
2
þ x2Z

4
þOðx3Þ; ð118Þ

GY ð2Þ ¼
1

6Z
þ 23

36
xþOðx2Þ ð119Þ
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showing that two iterations with Eq. (114) fail to produce even leading order accuracy. However, more iter-
ations with Eq. (114) produce convergence:
GY ð3Þ ¼
1

2Z
� 11

4
xþOðx2Þ; ð120Þ

GY ð4Þ ¼
1

2Z
� 3

4
xþOðx2Þ; ð121Þ
where GY(3) and GY(4) being O(x1) and O(x2) accurate when compared to the correct value, Eq. (111).
Alternatively, assuming that y is the fast variable and z is the slow one, the differential equation (57) and the

iterative relation (58) for Gz take the form:
dGz

dt
� 2z� y

e
1þ Gzð Þ ¼ � zþ e

e
þ z
e
Gz

	 

Gz; ð122Þ

Gzðnþ 1Þ ¼ e
z 1þ GzðnÞð Þ þ e

2z� yð Þ
e

1þ GzðnÞð Þ � dGzðnÞ
dt

� �
. ð123Þ
Starting with Gz(0) = 0, Eq. (123) yields:
Gzð1Þ ¼
2z� y
zþ e

; Gzð2Þ ¼
2z� y
zþ e

1þ p2
q2

� �
; ð124Þ
where
p2 ¼ zðz2 � y2Þ þ eð7z2 � 8yzþ y2Þ þ e2y;

q2 ¼ ð2z� yÞðzð3z� yÞ þ 2ezþ e2Þ.

In the first part of the outer region, where y � O(1), z � O(1) and y = z � e/2 + e2/(4z) + O(e3), Eqs. (124)
yield:
Gzð1Þ � 1� e
2z
þOðe2Þ; ð125Þ

Gzð2Þ ¼ 1� e
2z

	 
2
þOðe3Þ ð126Þ
showing that each iteration with Eq. (123) adds one degree of accuracy, towards the correct expression given
by Eq. (110). In the second part of the outer region, where y = ex2Y, z = exZ and Y = Z2 + x Z3 + O(x3K),
Eqs. (124) yield:
GZð1Þ ¼ 2Z � xð2Z2 � Y Þ þOðx2Þ; ð127Þ
GZð2Þ ¼ 2Z þ xð5Z2 � 2Y Þ þOðx2Þ ð128Þ
each iteration with Eq. (123) adding again one degree of accuracy; GZ(1) and GZ(2) being within O(x1) and
O(x2) the correct value, Eq. (112).

The analytical results presented abovewere corroborated by computational ones based on the numerical (4-th
order accuracy) and approximate solution of the pertinent differential equations; namely Eqs. (113) and (114)
for the case where the variable z is considered the fast variable or Eqs. (122) and (123) for the case where the
variable y is considered the fast one.

Fig. 6 shows the evolution of Gy computed numerically from the differential equation (113), denoted as
Gy,exact, and approximately from the iterative equation (114) for two levels of accuracy; Gy(1) and Gy(2) from
Eqs. (115). It is shown that, within a period of O(e), all three quantities converge to the appropriate value, set
by Eq. (109), for the first part of the outer region, where y � z � e/2. However, when the solution evolves in
the second part of the outer region, where ey � z2, only Gy,exact follows the correct value, set by Eq. (111). In
contrast, Gy(1) diverges, while Gy(2) follows the right trend, staying far from the expected accuracy.

Fig. 7 shows the evolution of Gz computed numerically from the differential equation (122), denoted as
Gz,exact, and approximately from the iterative equation (123) for two levels of accuracy; Gz(1) and Gz(2) from
Eqs. (124). Again, it is shown that, within a period of O(e), all three quantities converge to the appropriate
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value, set by Eq. (110), for the first part of the outer region. This agreement persists when the solution evolves
in the second part of the outer region, where the appropriate value is set by Eq. (112).

Apparently, in the first part of the outer region where both variables are fast, it does not matter whether the
Gy or the Gz formulation is employed. As a result, both iterative expressions, Eqs. (114) and (123), provide
equally valid results. In contrast, in the second part where only y is a fast variable, the Gy formulation needs
more iterations than the Gz formulation does to obtain similar order accuracy.

These developments are reflected in the evolution of the fast amplitude, defined according to Eq. (19) as
F 1 ¼ B1g ¼ ðgr � Gr

sg
sÞ. In the case where z is taken as the fast variable, the first two levels of Gy approxima-

tion produce:
F 1
z;fastð1Þ ¼ zt � Gyð1Þyt

� �
; F 1

z;fastð2Þ ¼ zt � Gyð2Þyt
� �

; ð129Þ
while in the case where y is taken as the fast variable, the first two levels of Gz approximation produce:
F 1
y;fastð1Þ ¼ yt � Gzð1Þztð Þ; F 1

y;fastð2Þ ¼ yt � Gzð2Þztð Þ. ð130Þ
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The evolution of F 1
z;fastð1Þ and F 1

z;fastð2Þ is displayed in Fig. 8, while that of F 1
y;fastð1Þ and F 1

y;fastð2Þ is displayed in
Fig. 9. It is shown that during the first part of the outer region, where y � z � e/2 holds, both Gy and Gz for-
mulations produce similar results; i.e., same rate of decay for both F1(1) and F1(2) (the decay of the latter last-
ing for a longer time), and similar accuracy improvement from F1(1) to F1(2).

This agreement is not true in the second part of the outer region, where ey � z2 holds. Now, only the Gz

formulation allows for the proper decay for both F1(1) and F1(2) and for the accuracy improvement from
F1 (1) to F1(2). In comparison, the Gy formulation allows for slower decay and little accuracy improvement.

Figs. 10 and 11 compare the leading and second order accurate fast amplitude as computed from the CSP algo-
rithm, f1(1,1) and f1(2,1), and from the modified CSP, F 1

z;fastð1Þ and F 1
z;fastð2Þwhen z is considered the fast variable

and F 1
y;fastð1Þ and F 1

y;fastð2Þ when y is considered the fast variable. It is shown that in the first part of the outer
region, where both y and z are fast, there exists a full agreement between the amplitudes of similar accuracy;
i.e., F 1

z;fastð1Þ and F 1
y;fastð1Þ agree very well with f1(1,1), while F 1

z;fastð2Þ and F 1
y;fastð2Þ agree very well with f1(2,1).
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However, in the second part of the outer region, where only y is fast, only F 1
y;fastð1Þ and F 1

y;fastð2Þ agree with
f1(1,1) and f1(2,1), respectively; the quantities F 1

z;fastð1Þ and F 1
z;fastð2Þ exhibiting significant deviations.
11.4. Fast variables

The identification of the fast variables can be made on the basis of the pointer Qr, Eq. (68), formulated with
quantities from the modified CSP algorithm. In particular, when z is considered the fast variable, Eq. (65)
yields for Rs

rð1Þ (m = 1 and Rs
rð0Þ ¼ 0) in the first and second parts in the outer region:
Rs
rð1Þ ¼

1

1þ Gy
; Rs

rð1Þ ¼
1

xþ GY
.
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The pointer Q1 yields:
Q1

1st
¼

ðGy þ 1Þ�1

GyðGy þ 1Þ�1

" #
; Q1

2nd
¼ xðGY þ xÞ�1

GY ðGY þ xÞ�1

" #
;

where the subscripts ‘‘1st’’ and ‘‘2nd’’ refer to the first (y � z � e/2) and second (Y � Z2 + xZ3) parts in the
outer region. Substituting for Gy from Eqs. (109) and (111) yields:
Q1

1st
¼

0:5þOðeÞ
0:5þOðeÞ

� �
; Q1

2nd
¼

OðxÞ
1þOðxÞ

� �
. ð131Þ
When z is considered the fast variable, then y = [z,y]T. Eq. (131) then confirms that is correct to consider z a
fast variable in the first part of the outer region (since d1 = O(1)) but wrong in the second (since d1 = O(x)).

On the other hand, when y is considered the fast variable, Eq. (65) yields for Rs
rð1Þ (m = 1 and Rs

rð0Þ ¼ 0) in
the first and second parts in the outer region:
Rs
rð1Þ ¼

z
ð1þ GzÞzþ e

; Rs
rð1Þ ¼

x2Z
ð1þ xGZÞxZ þ 1

.

The pointer Q1 yields:" # " #

Q1

1st
¼ 1� Gzz½ð1þ GzÞzþ e��1

Gzz½ð1þ GzÞzþ e��1
; Q1

2nd
¼ 1� x2GZZ½1þ ð1þ xGZÞxZ��1

x2GZZ½1þ ð1þ xGZÞxZ��1
.

Substituting for Gy from Eqs. (110) and (112) yields:
Q1

1st
¼ 0:5þOðe2Þ

0:5þOðe2Þ

� �
; Q1

2nd
¼ 1þOðx2Þ

Oðx2Þ

� �
. ð132Þ
Since the fast variable is now assumed to be y, then y = [y,z]T. Accordingly, Eqs. (132) indicate that this
assumption is correct in both parts of the outer region (since d1 = O(1)).

11.5. The simplified non-stiff problem

The correct or wrong identification of the fast variable has an effect on the accuracy of the simplified non-
stiff problem, Eq. (22). In particular, when z is considered the fast variable, the simplified non-stiff system in
the first and second parts of the outer region, where y � z � e/2 or Y � Z2 + xZ3 hold, respectively, are:
d

dt

z

y

� �
¼

Gy

1

� �
�y

1þ Gy

� �
; ð133Þ

d

ds

Z

Y

� �
¼

GY

1

� �
�Y

GY þ x

� �
. ð134Þ
For leading order accuracy, employing Eq. (116) for Gy and Eq. (118) for GY in Eqs. (133) and (134), respec-
tively, yields:
d

dt

z

y

� �
¼

1

1

� �
� z
2

	 

þOðeÞ; ð135Þ

d

ds

Z

Y

� �
¼ 1

3

�Z2

�2Z2=x� 5Z3=3

" #
þOðxÞ ð136Þ
while for second order accuracy, substituting Eq. (117) for Gy and Eq. (119) for GY in Eqs. (133) and (134),
respectively, yields:
d

dt

z

y

� �
¼

1

1

� �
� z
2
þ e
4

	 

þOðe2Þ; ð137Þ

d

ds

Z

Y

� �
¼ �Z2 þ 5xZ3

�6Z3 þ 53xZ4

" #
þOðx2Þ. ð138Þ
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On the other hand, when y is considered the fast variable, the simplified non-stiff system in the two parts of the
outer region are:
d

dt

y

z

� �
¼

Gz

1

� �
�z2

1þ Gzð Þzþ e

� �
; ð139Þ

d

ds

Y

Z

� �
¼

GZ

1

� �
� Z2

1þ x 1þ xGZð ÞZ

� �
. ð140Þ
For leading order accuracy, employing Eqs. (125) for Gz and (127) for GZ in Eqs. (139) and (140), respectively,
yields:
d

dt

y

z

� �
¼

1

1

� �
� z
2

	 

þOðeÞ; ð141Þ

d

ds

Y

Z

� �
¼ �2Z3

�Z2

" #
þOðxÞ; ð142Þ
while for second order accuracy, substituting Eqs. (126) for Gz and (128) for GZ in Eqs. (139) and (140),
respectively, yields:
d

dt

y

z

� �
¼

1

1

� �
� z
2
þ e
4

	 

þOðe2Þ; ð143Þ

d

ds

Y

Z

� �
¼ �2Z3 � xZ4

�Z2 þ xZ3

" #
þOðx2Þ. ð144Þ
The different simplified non-stiff systems above should be compared with those obtained with the singular per-
turbation analysis and the CSP method in the first and second parts of the outer region for leading order accu-
racy, Eqs. (78) and (87), and second order accuracy, Eqs. (80) and (89). It is seen that in the first part of the
outer region, where both y and z are fast, the new algorithm produces the expected accuracy when selecting
either y or z as the fast one; compare Eqs. (135), (137) and (141), (143) with (78), (80). However, in the second
part, where only y is fast, the new algorithm failed to produce the correct results when z was selected as the fast
variable, compare Eqs. (136), (138) with (87), (89), but succeeded when y was identified as the fast variable,
compare Eqs. (142), (144) with (87), (89).

Finally, the problems that arise when the form of Eq. (23) of the simplified system is employed, instead of
the correct form of Eq. (22) can now be discussed. It was shown by Eqs. (133), (134) and (139), (140) that use
of Eq. (22) resulted in non-stiff simplified problems, the accuracy level of which depended on whether the cor-
rect choice was made for the fast variable. However, if Eq. (23) is employed in the first part of the outer region,
the following simplified systems are produced:
d

dt

z

y

� �
¼

1

1

� �
z
e
ðz� yÞ � y

	 

þOðeÞ; ð145Þ

d

dt

y

z

� �
¼

1

1

� �
� z
e
ðz� yÞ

	 

þOðeÞ ð146Þ
in the case where z or y, respectively, is selected as the fast variable. It is seen that, although on the SIM
expressed by the relation y = z � e/2 + e2/(4z) + O(e3), Eqs. (145) and (146) reduce to the correct asymptotic
limit displayed by Eq. (137), both are stiff. Similar conclusions for the stiffness of Eq. (23) can be drawn if the
second part of the outer region is considered.

12. Discussion

The new CSP algorithm presented here resulted in the set of basis vectors:
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Arðn; jÞ ¼
Irr �Gr

sðnÞR
s
rðjÞ

�Rs
rðjÞ

� �
; AsðnÞ ¼

Gr
sðnÞ
Iss

� �
;

BrðnÞ ¼ ½Irr;�G
r
sðnÞ�; Bsðn; jÞ ¼ Rs

rðjÞ; Iss � Rs
rðjÞG

r
sðnÞ

� �
.

It was shown that these vectors are the CSP basis vectors, properly scaled. The accuracy they provide for the
identification of the SIM and the solution of the simplified non-stiff system is similar to that provided by the
original CSP algorithm. The equivalence of the two sets of basis vectors is stated in Appendix A.

The modified CSP algorithm is shown to be much more efficient, especially in the cases where the SIM
extends to a very small number of dimensions (M! N), so that significant simplifications are practically pos-
sible. An estimate of the increased efficiency can be obtained by estimating the number of operations for (i) the
evaluation of the M vectors in br and Br after one refinement, which are needed for the identification of the
SIM through the equations br g � 0 or Brg � 0, and (ii) the evaluation of the projection matrices asb

s and
AsB

s, which are needed for the computation of the vector fields (asb
s)g or (AsB

s)g of the simplified non-stiff
problems, according to the original and the new CSP algorithms, respectively. In the following, it is assumed
that the solution of M N-dimensional linear systems Ax = b and the inversion of a N · N matrix require (N/
3+M)N2 and 4N3/3 number of operations, respectively.

In particular, the br-refinement is completed by solving NM-dimensional linear systems, as specified by Eq.
(38), while the Br-refinement according to Eq. (58) is completed by solving (N �M) M-dimensional linear sys-
tems. Neglecting the computational load for the evaluation of the time derivative terms, the br- and Br-refine-
ments require:
C1 ¼ MN 2ð1þ 2dþ d2=3Þ

and
C2 ¼ MN 2ð1� 2d2=3Þ

number of operations, respectively, where d = M/N. When d� 1 both algorithms need the same number of
operations. In contrast, when d! 1 the new CSP algorithm requires O(10) less operations; i.e., C1 � 10C2.

The computation of the projection matrices asb
s and AsB

s, given ar, b
r, Gr

s, and Rr
s, requires:
D1 ¼ MN 2 þ N 2
and
D2 ¼ MN 2ð1� dÞ2 þ N 2ð1� d2Þ

number of operations, respectively. Both algorithms need the same number of operations when d� 1, while
the new algorithm becomes much faster in the limit d! 1; i.e., D2� D1.

The superior efficiency of the modified CSP algorithm, thus established in the case where the time derivative
terms are neglected, becomes more pronounced when the time derivative terms are taken into account. First,
the br-refinement requires the evaluation of MN derivatives, while the Br-refinement requires the evaluation of
only M(N �M) ones. Appendix B displays the necessary operations for the time derivative evaluation of
br(1,m1) needed for two br-refinements, when starting from constant br(0,m1) with the algorithm developed
in [45]. Also shown are the operations for the time derivative evaluation of Br(1) needed for two Br-refine-
ments, with the same algorithm. It is demonstrated that obr(1,m1)/ot and oBr(1)/ot require:
E1 ¼ MN 2ð4þ 3dþ 2d2=3Þ

and
E2 ¼ MN 2ðð1� dÞð2þ 3dÞ þ 2d2=3Þ

number of operations, respectively. Again, both algorithms need a similar number of operations when d� 1,
while when d! 1 the new algorithm requires less operations; i.e., E1 � 10E2.

By employing Eqs. (41) and (42), the methodologies employed by CSP for declaring the fast amplitudes
negligible and for correcting the omission of the fast amplitudes during the integration along the SIM can also
be employed in the modified CSP algorithm presented here.
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In particular, according to Eq. (47), the amplitudes of the modified CSP version presented here are related
to the ones of the original version by the relations:
F r ¼ ðbrrÞ
�1f r; F s ¼ ðassÞf s. ð147Þ
Given the discussion in Section 10 on the magnitude of brr and ass, it follows that the amplitudes Fr will remain
negligible when the M fastest time scales are exhausted, exactly as the amplitudes fr do. According to the CSP
method theM fastest modes were declared exhausted when the corresponding amplitudes satisfy the condition:
jsðM þ 1Þarf rj < erely þ eabs; ð148Þ
where s(M + 1) denotes the fastest of the N �M slow time scales, |v| denotes the absolute values of the ele-
ments of the vector v and 0(erel)� 1 and 0(eabs)� 1 denote the allowed relative and absolute error committed
when the fast amplitudes are neglected during the integration of the simplified non-stiff system, Eqs. (46) [18–
20,22,26]. Due to the transformations (41) and (42), the condition equation (148) is cast as:
jsðM þ 1ÞArF rj < erely þ eabs ð149Þ
and can be employed for identifying the negligible fast amplitudes, Eq. (43), in the revised CSP algorithm.
In addition, according to the CSP algorithm a correction to the effects of omitting the fast amplitudes when

solving the simplified non-stiff system along the SIM was applied at the end of each time step, according to the
relation:
y  y � ars
r
rf

r ð150Þ
introduced as the ‘‘homogeneous correction’’ [17,19]. Employing the relations (41) and (42), this correction
can also be employed in the modified CSP algorithm as:
y  y � Ar Jr
r �Gr

sðnÞJs
r

� ��1
F r. ð151Þ
Finally, it should be noted that the ease of computing Gr
s allows the incremental changes in the M fast com-

ponents of the state vector y to be directly related to those of the remaining N �M ones. This is achieved by
the definition of the matrix Gr

s, Eq. (11), which can be cast as:
oz ¼ Gr
sos; ð152Þ
where z contains the M fastest components of y and s contains the remaining N �M components parameter-
izing the manifold. For the Lindemann problem examined previously and for the second part of the outer
region where �y � z2, substituting the leading order approximation for Gr

s in Eq. (152) yields:
oy ¼ 2z
e
oz ð153Þ
when y is considered the fast variable and
oz ¼ e
2z

oy ð154Þ
when z is considered the fast variable. Noting that in the period under consideration 2z/e� 1, Eqs. (153) and
(154) provide a clear demonstration of the possible benefits one can gain from Eq. (152), as well as the pitfalls
that might arise from a wrong selection of the fast variables.

13. Conclusions

The invariance equation method for the construction of SIM was extended to produce the simplified system
that governs the evolution of the solution on the SIM. It was shown that this extended IE method is nothing
but the computational singular perturbation method, its basis vectors properly scaled. It was further shown
that this new (rescaled) version of CSP produces the expected accuracy only when the number and identity
of the fast variables, equal to the dimensions of the fast subdomain, are correctly defined.

It was also demonstrated that the modified CSP algorithm exhibits superior convergence properties in the
description of the manifold (in comparison to the original IE method) and a much higher efficiency in
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constructing the simplified non-stiff problem (in comparison to the original CSP method). The modified CSP
method offers the basis for developing a very promising scheme of numerical integration, along the lines of the
time-scale splitting, explicit algorithm presented in [26], especially when significant reductions are allowed by
the physics of the problem under consideration; i.e., 1� N and M � N.

These very appealing characteristics follow mainly from (i) the development of Eq. (58) for the iterative
computation of the matrix Gr

s and (ii) the modification of the CSP method in a way that allows both the man-
ifold and the simplified non-stiff system to be constructed on the basis of Gr

s and Rs
r.

The matrix Gr
s is smaller than its counterpart in the original CSP method br; the former beingM · (N �M)-

dimensional and the latter M · N-dimensional. Gr
s must be updated every time step, since it determines the

accuracy of both the manifold and the solution of the simplified non-stiff problem. Similarly, the matrix Rs
r

is smaller than its counterpart ar; the former being (N �M) · M-dimensional and the later N · M-dimen-
sional. However, since it determines the non-stiffness of the simplified problem, the matrix Rs

r needs updating
only when significant rotation of the fast/slow subspaces is taking place.

The CSP version presented here is very promising in addressing problems modeled by differential equations
where large scale reductions are possible, such as those arising in the simulation of physical problems requiring
an efficient prediction of coarse-grained or macroscopic quantities by considering mathematical models based
on the detailed or microscopic level [58–62].
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Appendix A. Similarity of the original and new CSP basis vectors

The br-refinement of the CSP basis vectors, Eq. (38), can be expressed in matrix form as:
brðk1 þ 1;m1Þ
bsðk1 þ 1;m1Þ

� �
¼

Irr prs

0sr Iss

� �
brðk1;m1Þ
bsðk1;m1Þ

� �
; ðA:1Þ

arðk1 þ 1;m1Þasðk1 þ 1;m1Þ½ � ¼ arðk1;m1Þasðk1;m1Þ½ �
Irr �prs
0sr Iss

� �
; ðA:2Þ
where prs ¼ srrðk1;m1Þkrsðk1;m1Þ.
Similarly, the ar-refinement of the CSP basis vectors, Eq. (39), can be stated as:
brðk2;m2 þ 1Þ
bsðk2;m2 þ 1Þ

� �
¼

Irr 0rs

�qsr Iss

� �
brðk2;m2Þ
bsðk2;m2Þ

� �
; ðA:3Þ

arðk2;m2 þ 1Þasðk2;m2 þ 1Þ½ � ¼ arðk2;m2Þasðk2;m2Þ½ �
Irr 0rs

qsr Iss

� �
; ðA:4Þ
where qsr ¼ ksrðk2;m2Þsrrðk2;m2Þ.
After k br-refinements and m ar-refinements, the accuracy provided by the original CSP vectors is equivalent

to that provided by the new basis vectors, as determined by the expressions:
BrðnÞ
Bsðn; jÞ

� �
¼ brrðk;mÞ

� ��1
0rs

0sr assðk;mÞ

" #
brðk;mÞ
bsðk;mÞ

� �
; ðA:5Þ

½Arðn; jÞAsðnÞ� ¼ arðk;mÞasðk;mÞ½ �
brrðk;mÞ 0rs

0sr assðk;mÞ
� ��1

" #
; ðA:6Þ
where the values of the indices n and j depend on the initial guess employed for the new refinement procedure.
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Appendix B. The time derivative of the vectors in br and Br

In [45] it was shown that starting with constant br(0,m1) and ar(0,m1), the evaluation of br(1,m1) and its
derivative can be accomplished through the sequence of operations:
krrð0;m1Þ ¼ brð0;m1ÞJarð0;m1Þ; ðB:1Þ
krrð0;m1Þbrð1;m1Þ ¼ brð0;m1ÞJ; ðB:2Þ

krrð0;m1Þ
obrð1;m1Þ

ot
¼ brð0;m1Þ

oJ

ot
INN � arð0;m1Þbrð1;m1Þ
� �

. ðB:3Þ
Similarly, starting with constant Brð0Þ ¼ ½Irr;�G
r
sð0Þ�, the evaluation of Br(1) and its derivative can be accom-

plished through the sequence of operations:
Kr
rð0Þ ¼ Jr

r �Gr
sð0ÞJ

s
r; ðB:4Þ

Kr
rð0ÞG

r
sð1Þ ¼ Gr

sð0ÞJs
s � Jr

s

� �
; ðB:5Þ

Brð1Þ ¼ ½Irr;�G
r
sð1Þ�; ðB:6Þ

Kr
rð0Þ

oGr
sð1Þ
ot

¼ �Brð0Þ oJ
ot

Asð1Þ; ðB:7Þ

oBrð1Þ
ot

¼ 0rr;�
oGr

sð1Þ
ot

� �
. ðB:8Þ
References

[1] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eqs. 31 (1979) 53–98.
[2] P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integral manifolds and inertial manifolds for dissipative partial differential

equations, Appl. Math. Sci. 70 (1989).
[3] S.J. Fraser, The steady state and equilibrium approximations: a geometrical picture, J. Chem. Phys. 88 (1988) 4732–4738.
[4] A.H. Nguyen, S.J. Fraser, Geometrical picture of reaction in enzyme kinetics, J. Chem. Phys. 91 (1989) 186–193.
[5] M.R. Roussel, S.J. Fraser, Geometry of the steady-state approximation: perturbation and accelerated convergence methods, J. Chem.

Phys. 93 (1990) 1072–1081.
[6] M.R. Roussel, S.J. Fraser, On the geometry of transient relaxation, J. Chem. Phys. 94 (1991) 7106–7113.
[7] M.R. Roussel, S.J. Fraser, Accurate steady-state approximations-implications for kinetics experiments and mechanism, J. Phys.

Chem. 95 (1991) 8762–8770.
[8] M.R. Roussel, S.J. Fraser, Global analysis of enzyme-inhibition kinetics, J. Phys. Chem. 97 (1993) 8316–8327.
[9] M.R. Roussel, Forced convergence iterative schemes for the approximation of invariant manifolds, J. Math. Chem. 21 (1997) 385–

393.
[10] M.R. Roussel, S.J. Fraser, Invariant manifold for metabolic reduction, Chaos 11 (2001) 196–206.
[11] S.J. Fraser, Slow manifold for a bimolecular association mechanism, J. Chem. Phys. 120 (2004) 3075–3085.
[12] M.J. Davis, R.T. Skodje, Geometric investigation of low-dimensional manifolds in systems approaching equilibrium, J. Chem. Phys.

111 (1999) 859–874.
[13] M.J. Davis, R.T. Skodje, Geometric approach to multiple-time-scale kinetics: a nonlinear master equation describing vibration-to-

vibration relaxation, Z. Phys. Chem. 215 (2001) 233–252.
[14] R.T. Skodje, M.J. Davis, Geometrical simplification of complex kinetic systems, J. Phys. Chem. A 105 (2001) 10356–10365.
[15] J. Nafe, U. Maas, A general algorithm for improving ILDMs, Combust. Theory Model 6 (2002) 697–709.
[16] S.H. Lam, D.A. Goussis, Understanding complex chemical kinetics with computational singular perturbation, Proc. Combust. Inst.

22 (1988) 931–941.
[17] S.H. Lam, D.A. Goussis, Conventional asymptotic and computational singular perturbation for simplified kinetics modelling, in:

M.O. Smooke (Ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane–Air Flames, Springer Lecture
Notes, Springer, Berlin, 1991, pp. 227–242.

[18] D.A. Goussis, S.H. Lam, A study of homogeneous methanol oxidation kinetics using CSP, Proc. Combust. Inst. 24 (1992) 113–120.
[19] S.H. Lam, Using CSP to understand complex chemical kinetics, Combust. Sci. Technol. (1993) 375–404.
[20] S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinet. 26 (1994) 461–486.
[21] D.A. Goussis, On the construction and use of reduced chemical kinetics mechanisms produced on the basis of given algebraic

relations, J. Comput. Phys. 128 (1996) 261–273.
[22] M. Hadjinicolaou, D.A. Goussis, Asymptotic solution of Stiff PDE�s – the reaction diffusion equation, SIAM J. Sci. Comput. 20

(1999) 781–810.



D.A. Goussis, M. Valorani / Journal of Computational Physics 214 (2006) 316–346 345
[23] A. Massias, D. Diamantis, E. Mastorakos, D.A. Goussis, An algorithm for the construction of global reduced mechanisms with CSP
data, Combust. Flame 117 (1999) 685–708.

[24] G.E. Frouzakis, K. Boulouchos, Analysis and reduction of the CH4–air mechanism at lean conditions, Combust. Sci. Tech. 159 (2000)
281–303.

[25] T.F. Lu, Y.G. Ju, C.K. Law, Complex CSP for chemistry reduction and analysis, Combust. Flame 126 (2001) 1445–1455.
[26] M. Valorani, D.A. Goussis, Explicit time-scale splitting algorithms for Stiff problems: auto-ignition of gaseous mixtures behind a

steady shock, J. Comput. Phys. 169 (2001) 44–79.
[27] M. Valorani, F. Creta, D.A. Goussis, H.N. Najm, Local and global manifolds in stiff reaction-diffusion systems, in: 2nd MIT Conf.

on Comput. Fluid and Solid Mechanics, Boston, June, 2003, pp. 1548–1551.
[28] M. Valorani, H.N. Najm, D.A. Goussis, CSP analysis of a transient flame vortex interaction: time scales and manifolds, Combust.

Flame 134 (2003) 35–53.
[29] U. Maas, S.B. Pope, Simplifying chemical kinetics – intrinsic low dimensional manifolds in composition space, Combust. Flame 88

(1992) 239–264.
[30] U. Maas, S.B. Pope, Implementation of simplified chemical kinetics based on intrinsic low dimensional manifolds, Proc. Combust.

Inst. 24 (1992) 103–112.
[31] D. Schmidt, U. Maas, Warnatz, Simulation of nonequilibrium hypersonic flows, Comput. Fluids 22 (1993) 285–294.
[32] U. Maas, S.B. Pope, Laminar flame calculations using simplified chemical kinetics based on intrinsic low dimensional manifolds,

Proc. Combust. Inst. 25 (1994) 1349–1356.
[33] R.L.G.M. Eggels, L.P.H. DeGoey, Mathematically reduced reaction mechanisms applied to adiabatic flat hydrogen–air flames,

Combust. Flame 100 (1995) 559–570.
[34] R.L.G.M. Eggels, L.P.H. DeGoey, Modeling of burner-stabilized hydrogen/air flames using mathematically reduced reaction

schemes, Combust. Sci. Tech. 107 (1995) 165–180.
[35] D. Schmidt, T. Blasenderey, U. Maas, Intristic low-dimensional manifold for strained and unstrained flames, Combust. Theory

Model 2 (1998) 135–152.
[36] K. Xiao, D. Schmidt, U. Maas, Pdf simulation of turbulent non-premixed CH4/H2–air flames using automatically simplified kinetics,

Proc. Combust. Inst. 27 (1998) 1073–1080.
[37] T. Blasenderey, U. Maas, ILDMs of higher hydrocarbons and the hierarchy of chemical kinetics, Proc. Combust. Inst. 28 (2000)

1623–1630.
[38] S. Singh, Y. Rastigejev, S. Paolucci, J.M. Powers, Viscous detonation in H2–O2–Ar using intristic low-dimensionals and wavelet

adaptive multilevel representation, Combust. Theory Model. 5 (2001) 163–184.
[39] S. Singh, J.M. Powers, S. Paolucci, On slow manifolds of chemically reactive systems, J. Chem. Phys. 117 (2002) 1482–1496.
[40] I. Goldfarb, V. Goldshtein, U. Maas, Comparative analysis of two asymptotic approaches based on integral manifolds, IMA J. Appl.

Math. 69 (2004) 353–374.
[41] H.G. Kaper, T.J. Kaper, Asymptotic analysis of two reduction methods for systems of chemical reactions, Physica D 165 (2002) 66–

93.
[42] A. Zagaris, H.G. Kaper, T.J. Kaper, Analysis of the computational singular perturbation reduction method for chemical kinetics, J.

Nonlinear Sci. 14 (2004) 59–91.
[43] A. Zagaris, H.G. Kaper, T.J. Kaper, Fast and slow dynamics for the CSP method, SIAM J. Multiscale Model. 2 (2004) 613–

638.
[44] D.A. Goussis, M. Valorani, F. Creta, H.N. Najm, Inertial manifolds with CSP, in: 2nd MIT Conference on Computational Fluid and

Solid Mechanics, Boston, June, 2003, pp. 1951–1954.
[45] M. Valorani, D.A. Goussis, F. Creta, H.N. Najm, Higher order corrections in the approximation of inertial manifolds and the

construction of simplified problems with the CSP method, J. Comput. Phys. 209 (2005) 754–786.
[46] A.N. Gorban, I.V. Karlin, Method of invariant manifold for chemical kinetics, Chem. Eng. Sci. 58 (2003) 4751–4768.
[47] A.N. Gorban, I.V. Karlin, Invariant manifolds for physical and chemical kineticsLectutre Notes in Physics, vol. 660, Springer, Berlin,

2004.
[48] O. Axelsson, Iterative Solution Methods, Cambridge University Press, England, 1994.
[49] G. Strang, Linear Algebra and its Applications, third ed., Saunders, Philadelphia, PA, 1988.
[50] A. Jennings, J.J. McKeown, Matrix Computations, Wiley, England, 1992.
[51] W. Richardson, J. Volk, K.H. Lau, S.H. Lin, H. Eyring, Application of the singular perturbation method to reaction kinetics, Proc.

Natl. Acad. Sci. USA 70 (1973) 1588–1592.
[52] K.J. Laidler, Chemical Kinetics, McGraw-Hill, New York, 1950, pp. 76–85.
[53] S.M.T. De La Selva, E. Pina, Some mathematical properties of the Lindemann mechanism, Rev. Mex. Fis. 42 (1996) 431–448.
[54] M.J. Davis, S.J. Klippenstein, Geometric investigation of association dissociation kinetics with an application to the master equation

for CH3 + CH3�@�C2H6, J. Phys. Chem. A 106 (2002) 5860–5879.
[55] R.Y. Qian, A new formulation of the Lindemann mechanism of unimolecular reactions, Chin. J. Chem. 21 (2003) 1562–1564.
[56] K.R.A. Kumar, A.C. McIntosh, J. Brindley, et al., Effect of two-step chemistry on the critical extinction-pressure drop for pre-mixed

flames, Combust. Flame 134 (2003) 157–167.
[57] K. Saito, Effect of different choices of the Boltzmannized flux operator on rate constants in the Lindemann mechanism, Chem. Phys.

Lett. 383 (2004) 282–287.
[58] A.N. Gorban, I.V. Karlin, A.Y. Zinovyev, Constructive methods of invariant manifolds for kinetic problems, Phys. Rep. 396 (2004)

197–403.



346 D.A. Goussis, M. Valorani / Journal of Computational Physics 214 (2006) 316–346
[59] D. Givon, R. Kupferman, A. Stuart, Extracting macroscopic dynamics: model problems and algorithms, Nonlinearity 17 (2004) 55–
127.

[60] C.W. Gear, I.G. Kevrekidis, Telescopic projective methods for parabolic differential equations, J. Comput. Phys. 187 (1993) 95–109.
[61] E. Pesheck, N. Boivin, P. Christophe, Nonlinear modal analysis of structural systems using multi mode invariant manifolds,

Nonlinear Dyn. 25 (2001) 183–205.
[62] C.W. Gear, T.J. Kaper, I.G. Kevrekidis, A. Zagaris, Projecting to a slow manifold: singularly perturbed systems and legacy codes,

SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732.


	An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems
	Introduction
	Statement of the problem
	Description of the SIM
	The IE algorithm for identifying the SIM
	An algorithm for constructing the simplified system using the  {{\bf{G}}}_{s}^{r} matrix
	The CSP algorithm
	The equivalence of the two algorithms for the construction of the simplified system
	The computation of the matrix  {{\bf{G}}}_{s}^{r}
	The computation of the matrix  {{\bf{R}}}_{r}^{s}
	Partitioning of the unknowns in fast and slow components
	Example: the Lindemann mechanism
	Singular perturbation analysis
	The CSP method
	The modified CSP algorithm
	Fast variables
	The simplified non-stiff problem

	Discussion
	Conclusions
	Acknowledgments
	Similarity of the original and new CSP basis vectors
	The time derivative of the vectors in br and Br
	References


